

Welcome to dicomslide’s documentation!

Contents:

	Introduction
	Design

	Application programming interface

	Installation guide
	Requirements

	Installation

	User guide
	Constructing a DICOM Client

	Reading images using dicomslide API

	Reading images using openslide API

	Developer guide
	Pull requests

	Coding style

	Running tests

	Building documentation

	License

	API Documentation
	dicomslide package

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The dicomslide build distribution provides an application programming interface (API) for querying and retrieving whole slide images in DICOM format from local files or over network via a unified application programming interface.

The dicomslide Python package contains several classes and functions.

Design

The dicomslide Python package contains several data structures that abstract whole slide images.
The core data structure of the library is the dicomslide.Slide class, which represents a collection of DICOM VL Whole Slide Microscopy Image [https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_A.32.8.html] instances that share the same Container Identifier and Frame of Reference UID, i.e., that were acquired for the same physical class slide and are spatially aligned.
The interface exposed by the dicomslide.Slide class abstracts the organization of tiled images that belong to the slide (dicomslide.TiledImage) and the associated total pixel matrices (dicomslide.TotalPixelMatrix), which form a multi-resolution image pyramid (dicomslide.Pyramid).

Application programming interface

The library leverages the Python dicomweb-client [https://dicomweb-client.readthedocs.io/en/latest/] library to efficiently search for and retrieve whole slide image data from heterogeneous sources using the interface defined by the dicomweb_client.DICOMClient [https://dicomweb-client.readthedocs.io/en/latest/package.html#dicomweb_client.api.DICOMClient] protocol.
Importantly, the library does not load the entire images into memory, but dynamically retrieves only the image frames (tiles) that are needed for a requested image region.

The dicomweb_client.DICOMwebClient [https://dicomweb-client.readthedocs.io/en/latest/package.html#dicomweb_client.api.DICOMwebClient] and dicomweb_client.DICOMfileClient [https://dicomweb-client.readthedocs.io/en/latest/package.html#dicomweb_client.api.DICOMfileClient] classes both implement that protocol and thereby enable efficient reading of whole slide images in DICOM format from remote archives using the DICOMweb RESTful API (see DICOM Part 18 [https://dicom.nema.org/medical/dicom/current/output/chtml/part18/PS3.18.html]) and from local DICOM files (see DICOM Part 10 [https://dicom.nema.org/medical/dicom/current/output/chtml/part10/PS3.10.html]), respectively.

Installation guide

Requirements

	Python [https://www.python.org/] (version 3.6 or higher)

	Python package manager pip [https://pip.pypa.io/en/stable/]

Installation

Pre-build package available at PyPi:

pip install dicomslide

Source code available at Github:

git clone https://github.com/herrmannlab/highdicom ~/highdicom
pip install ~/highdicom

User guide

Reading whole slide images in DICOM format using the dicomslide package.

Constructing a DICOM Client

Use dicomweb_client.DICOMfileClient [https://dicomweb-client.readthedocs.io/en/latest/package.html#dicomweb_client.api.DICOMfileClient] to read whole slide images from DICOM files stored on a file system:

import dicomweb_client

client = dicomweb_client.DICOMfileClient(url='file:///tmp/images')

Use dicomweb_client.DICOMwebClient [https://dicomweb-client.readthedocs.io/en/latest/package.html#dicomweb_client.api.DICOMwebClient] to read whole slide images over network using DICOMweb services:

import dicomweb_client

client = dicomweb_client.DICOMwebClient(url='http://myserver.com/dicomweb')

Reading images using dicomslide API

import dicomslide
import numpy as np
from matplotlib import pyplot as plt

found_slides = dicomslide.find_slides(client, container_id='S22-ABC-123')
assert len(found_slides) == 1
slide = found_slides[0]

print(slide.num_channels)
print(slide.num_focal_planes)
print(slide.num_levels)
print(slide.total_pixel_matrix_dimensions)
print(slide.downsampling_factors)
print(slide.label_images)
print(slide.get_volume_images(channel_index=0, focal_plane_index=0))

region: np.ndarray = slide.get_image_region(
 pixel_indices=(0, 0),
 level=-1,
 size=(512, 512),
 channel_index=0,
 focal_plane_index=0
)
plt.imshow(region)
plt.show()

Reading images using openslide API

The library also exposes an OpenSlide [https://openslide.org/api/python/] interface (dicomslide.OpenSlide), which is intended as an API wrapper around a dicomslide.Slide instance and to be used as a drop-in replacement for an openslide.OpenSlide [https://openslide.org/api/python/#openslide.OpenSlide] instance:

from PIL import Image

openslide = dicomslide.OpenSlide(slide)

print(openslide.level_count)
print(openslide.dimensions)
print(openslide.level_dimensions)
print(openslide.level_downsamples)
print(openslide.properties)
print(openslide.associated_images)

thumbnail: Image.Image = openslide.get_thumbnail(size=(50, 100))
thumbnail.show()

Note that the OpenSlide API only supports 2D color images.
For images with multiple channels or Z-planes, only the standard dicomslide API can be used.

Developer guide

Source code is available at Github and can be cloned via git:

git clone https://github.com/herrmannlab/dicomslide ~/dicomslide

The dicomslide package can be installed in develop mode for local development:

pip install -e ~/dicomslide

Pull requests

Don’t commit code changes to the master branch. New features should be implemented in a separate branch called feature/* and bug fixes should be applied in separate branch called bugfix/*.

Before creating a pull request on Github, read the coding style guideline, run the tests and check PEP8 compliance.

Coding style

Code must comply with PEP 8 [https://www.python.org/dev/peps/pep-0008/].
The flake8 [http://flake8.pycqa.org/en/latest/] package is used to enforce compliance.

The project uses numpydoc [https://github.com/numpy/numpydoc/] for documenting code according to PEP 257 [https://www.python.org/dev/peps/pep-0257/] docstring conventions.
Further information and examples for the NumPy style can be found at the NumPy Github repository [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt] and the website of the Napoleon sphinx extension [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html#example-numpy].

All API classes, functions and modules must be documented (including “private” functions and methods).
Each docstring must describe input parameters and return values.
Types must be specified using type hints as specified by PEP 484 [https://www.python.org/dev/peps/pep-0484/] (see typing [https://docs.python.org/3/library/typing.html] module) in both the function definition as well as the docstring.

Running tests

The project uses pytest [http://doc.pytest.org/en/latest/] to write and runs unit tests.
Tests should be placed in a separate tests folder within the package root folder.
Files containing actual test code should follow the pattern test_*.py.

Install requirements:

pip install -r ~/dicomslide/requirements_test.txt

Run tests (including checks for PEP8 compliance):

cd ~/dicomslide
pytest --flake8

Building documentation

Install requirements:

pip install -r ~/dicomslide/requirements_docs.txt

Build documentation in HTML format:

cd ~/dicomslide
make html

The built index.html file will be located in docs/build.

License

dicomslide is free and open source software licensed under the permissive MIT license [https://opensource.org/licenses/MIT].

API Documentation

dicomslide package

	
class dicomslide.ChannelTypes(value)

	Bases: Enum

Enumerated values for channel types.

	
OPTICAL_PATH = 'OPTICAL_PATH'

	

	
PARAMETER = 'PARAMETER'

	

	
SEGMENT = 'SEGMENT'

	

	
class dicomslide.ImageFlavors(value)

	Bases: Enum

Enumerated values for image flavors.

	
LABEL = 'LABEL'

	

	
OVERVIEW = 'OVERVIEW'

	

	
THUMBNAIL = 'THUMBNAIL'

	

	
VOLUME = 'VOLUME'

	

	
class dicomslide.OpenSlide(slide)

	Bases: object

Wrapper class that exposes data of a slide via the OpenSlide interface.

Note

There are two major differences between the OpenSlide interface exposed by
this class and the interface exposed by dicomslide.Slide:

1. The OpenSlide API returns images as :class:`PIL.Image.Image` objects,
while :class:`dicomslide.Slide` returns pixel arrays as
:class:`numpy.ndarray` objects.
2. The OpenSlide API specifies image dimensions and indices in
column-major order (following the Pillow convention), while
:class:`dicomslide.Slide` specifies array dimensions and indices in
row-major order (following the NumPy convention).

	Parameters

	slide (dicomslide.slide.Slide) – DICOM slide

	
property associated_images: Dict[str, Image]

	Mapping of image flavor (LABEL or
OVERVIEW) to image

	Type

	Dict[str, PIL.Image.Image]

	Return type

	typing.Dict[str, PIL.Image.Image]

	
close()

	
	Return type

	None

	
property dimensions: Tuple[int, int]

	Width and height of images at base level 0

	Type

	Tuple[int, int]

	Return type

	typing.Tuple[int, int]

	
get_best_level_for_downsample(downsample)

	Compute best level for displaying the given downsample.

	Parameters

	downsample (float) – Desired downsample factor

	Returns

	Zero-based level index

	Return type

	int

	
get_thumbnail(size)

	Create a thumbnail of the slide.

	Parameters

	size (Tuple[int, int]) – Number of pixels columns and rows that the thumbnail should have

	Returns

	RGB image

	Return type

	PIL.Image.Image

	
property level_count: int

	Number of pyramid resolution levels

	Type

	int

	Return type

	int

	
property level_dimensions: Tuple[Tuple[int, int], ...]

	Width and height of images at each level

	Type

	Tuple[Tuple[int, int]]

	Return type

	typing.Tuple[typing.Tuple[int, int], ...]

	
property level_downsamples: Tuple[float, ...]

	Downsampling factor of images at each level with
respect to the base level 0

	Type

	Tuple[float]

	Return type

	typing.Tuple[float, ...]

	
property properties: Dict[str, str]

	Metadata about the slide.

	Returns

	OpenSlide properties

	Return type

	Dict[str, str]

	
read_region(location, level, size)

	Read region of a VOLUME (or THUMBNAIL) image at a given level.

	Parameters

	
	location (Tuple[int, int]) – Zero-based (column, row) offset of the region from the topleft hand
pixel of of the total pixel matrix of the image at the base level 0

	level (int) – Zero-based level index

	size (Tuple[int, int]) – Number of pixels columns and rows that should be read from the
total pixel matrix at the specified level

	Returns

	RGBA image

	Return type

	PIL.Image.Image

	
class dicomslide.Pyramid(metadata, tolerance, ref_metadata=None)

	Bases: object

Image pyramid.

	Parameters

	
	metadata (Sequence[pydicom.Dataset]) – Metadata of DICOM image instances

	tolerance (float) – Maximally tolerated distances between the centers of images at
different pyramid levels in the slide coordinate system in
millimeter unit

	ref_metadata (Union[Sequence[pydicom.Dataset], None], optional) – Metadata of referenced DICOM source image instances that may serve
as a template

	
class dicomslide.PyramidLevel(total_pixel_matrix_dimensions: Tuple[int, int], pixel_spacing: Tuple[float, float], downsampling_factors: Tuple[float, float], has_pixels: bool)

	Bases: tuple

Image pyramid level.

Create new instance of PyramidLevel(total_pixel_matrix_dimensions, pixel_spacing, downsampling_factors, has_pixels)

	
property downsampling_factors

	Alias for field number 2

	
property has_pixels

	Alias for field number 3

	
property pixel_spacing

	Alias for field number 1

	
property total_pixel_matrix_dimensions

	Alias for field number 0

	
class dicomslide.Slide(client, image_metadata, max_frame_cache_size=6, pyramid_tolerance=0.1)

	Bases: object

A digital slide.

A collection of DICOM image instances that share the same Frame of
Reference UID and Container Identifier, i.e., that have been acquired as
part of one image acquisition for the same physical glass slide (container)
and can be visualized and analyzed in the same frame of reference
(coordinate system).

A slide consists of one or more image pyramids - one for each unique pair
of channel and focal plane. The total pixel matrices of the different
pyramid levels are stored in separate DICOM image instances. Individual
channels or focal planes may be each stored in separate DICOM image
instances or combined in a single DICOM image instance per pyramid level.
Pyramids are expected to have the same number of levels and the same
downsampling factors across channels and focal planes and the total pixel
matrices at each level are expected to have the same dimensions (i.e., the
same number of total pixel matrix columns and rows). However, the tiling of
the total pixel matrices (i.e., the number of tile columns and rows) may
differ across pyramid levels as well as across channels and focal planes at
the same pyramid level.

	Parameters

	
	client (dicomweb_client.api.DICOMClient) – DICOMweb client

	image_metadata (Sequence[pydicom.Dataset]) – Metadata of DICOM VL Whole Slide Microscopy Image instances or of
derived DICOM Segmentation or Parametric Map instances that belong
to the slide

	max_frame_cache_size (int, optional) – Maximum number of frames that should be cached per image instance
to avoid repeated retrieval requests

	pyramid_tolerance (float, optional) – Maximally tolerated distances between the centers of images at
different pyramid levels in the slide coordinate system in
millimeter unit

	
property downsampling_factors: Tuple[float, ...]

	Downsampling factors of images at each pyramid level
relative to the base level

	Type

	Tuple[float]

	Return type

	typing.Tuple[float, ...]

	
find_optical_paths(identifier=None, description=None, illumination_wavelength=None, specimen_stain=None)

	Find optical paths.

	Parameters

	
	identifier (Union[str, None], optional) – Optical path identifier

	description (Union[str, None], optional,) – Optical path description

	illumination_wavelength (Union[float, None], optional,) – Optical path illumination wavelength

	specimen_stain (Union[hd.sr.CodedConcept, Code, None], optional) – Substance used for specimen staining

	Returns

	Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	Return type

	Tuple[int, …]

	
find_segments(number=None, label=None, property_category=None, property_type=None)

	Find segments.

	Parameters

	
	number (Union[int, None], optional) – Segment number

	label (Union[str, None], optional,) – Segment label

	property_category (Union[hd.sr.CodedConcept, Code, None], optional) – Category of segmented property

	property_type (Union[hd.sr.CodedConcept, Code, None], optional) – Type of segmented property

	Returns

	Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	Return type

	Tuple[int, …]

	
property frame_of_reference_uid: str

	Unique identifier of the frame of reference

	Type

	str

	Return type

	str

	
get_channel_identifier(channel_index)

	Get identifier of a channel.

	Parameters

	channel_index (int) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	Returns

	Channel identifier

	Return type

	str

	Raises

	ValueError – When no channel is found for channel_index

	
get_channel_index(channel_identifier, channel_type)

	Get index of a channel.

	Parameters

	
	channel_identifier (str) – Channel identifier

	channel_type (Union[str, dicomslide.ChannelTypes]) – Channel type

	Returns

	Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute, which is
dependend on the type of channel.

	Return type

	int

	Raises

	ValueError – When no channel is found for channel_identifier and channel_type

	
get_channel_type(channel_index)

	Get type of a channel.

	Parameters

	channel_index (int) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	Returns

	Channel type

	Return type

	dicomslide.ChannelTypes

	Raises

	ValueError – When no channel is found for channel_index

	
get_focal_plane_index(focal_plane_offset)

	Get index of a focal plane.

	Parameters

	focal_plane_offset (float) – Offset of the focal plane from the from the slide surface along the
Z axis of the slide coordinate system in micrometers

	Returns

	Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Return type

	int

	Raises

	ValueError – When no focal plane is found for focal_plane_offset

	
get_focal_plane_offset(focal_plane_index)

	Get z offset of focal plane in slide coordinate system.

	Parameters

	focal_plane_index (int) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Offset of the focal plane from the from the slide surface along the
Z axis of the slide coordinate system in micrometers

	Return type

	float

	Raises

	ValueError – When no focal plane is found for focal_plane_index

	
get_image_region(offset, level, size, channel_index=0, focal_plane_index=0)

	Get image region.

	Parameters

	
	offset (Tuple[int, int]) – Zero-based (row, column) indices in the range [0, Rows) and
[0, Columns), respectively, that specify the offset of the image
region in the total pixel matrix of the image at the highest
resolution level. The (0, 0) coordinate is located at the
center of the topleft hand pixel in the total pixel matrix.

	level (int) – Zero-based index into pyramid levels

	size (Tuple[int, int]) – Rows and columns of the requested image region

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Three-dimensional pixel array of shape
(Rows, Columns, Samples per Pixel) for the requested image region

	Return type

	numpy.ndarray

	
get_pixel_indices(offset, level, channel_index=0, focal_plane_index=0)

	Get indices into total pixel matrix for a given slide position.

	Parameters

	
	offset (Tuple[float, float]) – Zero-based (x, y) offset in the slide coordinate system in
millimeter

	level (int) – Zero-based index into pyramid levels

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Zero-based (row, column) position in the total pixel matrix of the
image

	Return type

	Tuple[int, int]

Note

Pixel position may be negativ or extend beyond the size of the total
pixel matrix if slide position at offset does fall into a region on
the slide that was not imaged.

	
get_slide_offset(pixel_indices, level, channel_index=0, focal_plane_index=0)

	Get slide coordinates for a given total pixel matrix position.

	Parameters

	
	pixel_indices (Tuple[int, int]) – Zero-based (row, column) offset in the total pixel matrix

	level (int) – Zero-based index into pyramid levels

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Zero-based (x, y) position on the slide in the slide coordinate
system in millimeter

	Return type

	Tuple[float, float]

	
get_slide_region(offset, level, size, channel_index=0, focal_plane_index=0)

	Get slide region.

	Parameters

	
	offset (Tuple[float, float]) – Zero-based (x, y) offset in the slide coordinate system in
millimeter resolution. The (0.0, 0.0) coordinate is located at
the origin of the slide (usually the slide corner).

	level (int) – Zero-based index into pyramid levels

	size (Tuple[float, float]) – Width and height of the requested slide region in millimeter unit
along the X and Y axis of the slide coordinate system, respectively.

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Three-dimensional pixel array of shape
(Rows, Columns, Samples per Pixel) for the requested slide region

	Return type

	numpy.ndarray

Note

The slide coordinate system is defined for the upright standing slide
such that the X axis corresponds to the short side of the slide and the
Y axis corresponds to the long side of the slide.
The rows of the returned pixel array are thus parallel to the X axis of
the slide coordinate system and the columns parallel to the Y axis of
the slide coordinate system.

	
get_slide_region_for_annotation(annotation, level, channel_index=0, padding=0.0)

	Get slide region defined by a graphic annotation.

	Parameters

	
	annotation (highdicom.sr.Scoord3DContentItem) – Graphic annotation that defines the region of interest (ROI) in the
slide coordinate system

	level (int) – Zero-based index into pyramid levels

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	padding (Union[int, Tuple[int, int], Tuple[int, int, int, int]], optional) – Padding on each border of the region defined by annotation. If a
single integer is provided, the value is used to pad all four
borders with the same number of pixels. If a sequence of length 2
is provided, the two values are used to pad the left/right (along
the X axis) and top/bottom (along the Y axis) border, respectively.
If a sequence of length 4 is provided, the four values are used to
pad the left (- X axis), top (+ Y axis), right (+ X axis), and
bottom (- Y axis) borders respectively.

	Returns

	Three-dimensional pixel array of shape
(Rows, Columns, Samples per Pixel) for the requested slide region

	Return type

	numpy.ndarray

Note

The slide coordinate system is defined for the upright standing slide
such that the X axis corresponds to the short side of the slide and the
Y axis corresponds to the long side of the slide.
The rows of the returned pixel array are thus parallel to the X axis of
the slide coordinate system and the columns parallel to the Y axis of
the slide coordinate system.

	
get_volume_images(channel_index=0, focal_plane_index=0)

	Get VOLUME or THUMBNAIL images for an channel and focal plane.

	Parameters

	
	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Images sorted by size in descending order

	Return type

	Tuple[dicomslide.TiledImage, …]

	
property label_images: Tuple[TiledImage, ...]

	LABEL images of the slide

	Type

	Tuple[dicomslide.TiledImage, …]

	Return type

	typing.Tuple[dicomslide.image.TiledImage, ...]

	
map_pixel_indices_to_slide_coordinates(pixel_indices, level, channel_index=0, focal_plane_index=0)

	Map pixel indices to slide coordinates.

	Parameters

	
	pixel_indices (numpy.ndarray) – Zero-based (row, column) indices into the total pixel matrix of the
image

	level (int) – Zero-based index into pyramid levels

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Zero-based (x, y, z) coordinates in the slide coordinate system in
millimeter

	Return type

	numpy.ndarray

	
map_slide_coordinates_to_pixel_indices(slide_coordinates, level, channel_index=0, focal_plane_index=0)

	Map slide coordinates to pixel indices.

	Parameters

	
	slide_coordinates (numpy.ndarray) – Zero-based (x, y, z) coordinates in the slide coordinate system in
millimeter

	level (int) – Zero-based index into pyramid levels

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute of VOLUME
or THUMBNAIL images.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute of
VOLUME or THUMBNAIL images.

	Returns

	Zero-based (row, column) indices into the total pixel matrix of the
image

	Return type

	numpy.ndarray

	
property num_channels: int

	Number of channels

	Type

	int

	Return type

	int

	
property num_focal_planes: int

	Number of focal planes

	Type

	int

	Return type

	int

	
property num_levels: int

	Number of pyramid levels

Note

Levels are sorted by size in descending order from the base level
(highest image resolution, smallest pixel spacing) to the top level
(lowest image resolution, largest pixel spacing).

	Type

	int

	Return type

	int

	
property overview_images: Tuple[TiledImage, ...]

	OVERVIEW images of the slide

	Type

	Tuple[dicomslide.TiledImage, …]

	Return type

	typing.Tuple[dicomslide.image.TiledImage, ...]

	
property physical_offset: Tuple[float, float]

	Minimum offset of the total pixel matrices
from the origin of the frame of reference along the X and Y axes of the
slide coordinate system in millimeter

	Type

	Tuple[float, float]

	Return type

	typing.Tuple[float, float]

	
property physical_size: Tuple[float, float]

	Maximum size of the total pixel matrices along
the X and Y axes of the slide coordinate system in millimeter

	Type

	Tuple[float, float]

	Return type

	typing.Tuple[float, float]

	
property pixel_spacings: Tuple[Tuple[float, float], ...]

	Distance between neighboring pixels
along the row (left to right) and column (top to bottom) directions

	Type

	Tuple[Tuple[float, float], …]

	Return type

	typing.Tuple[typing.Tuple[float, float], ...]

	
property size: Tuple[int, int]

	Maximum size of the total pixel matrices along
the rows and columns axes of the total pixel matrix

	Type

	Tuple[int, int]

	Return type

	typing.Tuple[int, int]

	
property total_pixel_matrix_dimensions: Tuple[Tuple[int, int], ...]

	Number of columns and rows in the total
pixel matrix for images at each pyramid level

	Type

	Tuple[Tuple[int, int], …]

	Return type

	typing.Tuple[typing.Tuple[int, int], ...]

	
class dicomslide.TiledImage(client, image_metadata, max_frame_cache_size=6)

	Bases: object

A tiled DICOM image.

An instance of the class represents a tiled DICOM image instance and
provides methods for convenient and efficient access of image metadata and
pixel data from a DICOMweb server (or another source for which the
dicomweb_client.DICOMClient protocol has been implemented).

A tiled image is hereby defined as a DICOM image instance that contains
the Total Pixel Matrix Rows and Total Pixel Matrix Columns attributes.

The class is designed to be independent of a particular DICOM Information
Object Definition (IOD) or SOP Class and support various different types of
DICOM images, including VL Whole Slide Microscopy Image, Segmentation, and
Parametric Map.

Each image is associated with one or more
dicomslide.TotalPixelMatrix instances, one for each unique
combination of channel and focal plane.
The definition of a channel is specific to a particular IOD. For example,
in case of VL Whole Slide Microscopy Image, a channel corresponds to an
optical path, whereas in case of a Segmentation, a channel corresponds to a
segment.

Examples

>>> image = TiledImage(...)
>>> print(image.metadata) # pydicom.Dataset
>>> print(image.metadata.BitsAllocated)
>>> print(image.metadata.TotalPixelMatrixRows)
>>> pixel_matrix = image.get_tota_pixel_matrix(channel_index=0)
>>> print(pixel_matrix.dtype)
>>> print(pixel_matrix.shape)
>>> print(pixel_matrix[:1000, 350:750, :]) # numpy.ndarray

Construct object.

	Parameters

	
	client (dicomweb_client.api.DICOMClient) – DICOMweb client

	image_metadata (pydicom.dataset.Dataset) – Metadata of a tiled DICOM image

	max_frame_cache_size (int, optional) – Maximum number of frames that should be cached to avoid repeated
retrieval requests

Note

If image_metadata is the metadata of a color image, it should contain
the ICC Profile element to enable color management. The value of this
element may be considered bulkdata and therefore may have to be
retrieved separately over DICOMweb.

	
property channel_type: ChannelTypes

	type of channels

	Type

	dicomslide.ChannelTypes

	Return type

	dicomslide.enum.ChannelTypes

	
property frame_of_reference_uid: str

	Unique identifier of the frame of reference

	Type

	str

	Return type

	str

	
get_channel_identifier(channel_index)

	Get identifier of a channel.

	Parameters

	channel_index (int) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute.

	Returns

	Channel identifier

	Return type

	str

	Raises

	ValueError – When no channel is found for channel_index

	
get_channel_index(channel_identifier)

	Get index of a channel.

The nature of the channel is specific to the SOP Class for the image.
For example, in case of DICOM VL Whole Slide Microscopy Image, a
channel is an optical path and in case of a DICOM Segmentation, a
channel is a segment.

	Parameters

	channel_identifier (str) – Identifier of a channel

	Returns

	Zero-based index into channels along the direction defined by
successive items of the corresponding attribute.

	Return type

	int

	Raises

	ValueError – When no channel is found for channel_identifier

	
get_focal_plane_index(focal_plane_offset)

	Get index of a focal plane.

	Parameters

	focal_plane_offset (float) – Offset of the focal plane from the from the slide surface along the
Z axis of the slide coordinate system in micrometers

	Returns

	Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute.
Values must be in the range [1, Total Pixel Matrix Focal Planes]

	Return type

	int

	Raises

	ValueError – When no focal plane is found for focal_plane_offset

	
get_focal_plane_offset(focal_plane_index)

	Get z offset in slide coordinate system of a focal plane.

	Parameters

	focal_plane_index (int) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute.
Values must be in the range [0, Total Pixel Matrix Focal Planes).

	Returns

	Offset of the focal plane from the from the slide surface along the
Z axis of the slide coordinate system in micrometers

	Return type

	float

	Raises

	ValueError – When no focal plane is found for focal_plane_index

	
get_image_region(offset, size, channel_index=0, focal_plane_index=0)

	Get image region.

	Parameters

	
	offset (Tuple[int, int]) – Zero-based (row, column) indices in the range [0, Rows) and
[0, Columns), respectively, that specify the offset of the image
region in the total pixel matrix. The (0, 0) coordinate is
located at the center of the topleft hand pixel in the total pixel
matrix.

	size (Tuple[int, int]) – Rows and columns of the requested image region

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute.
Values must be in the range [0, Total Pixel Matrix Focal Planes)

	Returns

	Three-dimensional pixel array of shape
(Rows, Columns, Samples per Pixel) for the requested image region

	Return type

	numpy.ndarray

	
get_pixel_indices(offset)

	Get indices into total pixel matrix for a given slide position.

	Parameters

	offset (Tuple[float, float]) – Zero-based (x, y) offset in the slide coordinate system in
millimeter

	Returns

	Zero-based (row, column) position in the total pixel matrix

	Return type

	Tuple[int, int]

Note

Pixel position may be negativ or extend beyond the size of the total
pixel matrix if slide position at offset does fall into a region on
the slide that was not imaged.

	
get_references(sop_class_uid=None)

	Get unique identifiers of referenced instances.

	Parameters

	sop_class_uid (str) – SOP Class UID of instances for which references should be obtained

	Returns

	Study, Series, and SOP Instance UID of each referenced image

	Return type

	List[Tuple[str, str, str]]

	
get_rotation()

	Get angle to rotate image such that it aligns with slide.

We want to align the image with the slide coordinate system such that
the axes of the total pixel matrix are aligned with the X and Y axes
of the slide coordinate system to ensure that spatial coordinates of
graphic region of interest (ROI) annotations and are aligned with the
source image region.

	Returns

	Counterclockwise angle of rotation

	Return type

	float

	
get_slide_offset(pixel_indices)

	Get slide coordinates for a given total pixel matrix position.

	Parameters

	pixel_indices (Tuple[int, int]) – Zero-based (row, column) offset in the total pixel matrix

	Returns

	Zero-based (x, y) position on the slide in the slide coordinate
system in millimeter

	Return type

	Tuple[float, float]

	
get_slide_region(offset, size, channel_index=0, focal_plane_index=0)

	Get slide region.

	Parameters

	
	offset (Tuple[float, float]) – Zero-based (x, y) offset in the slide coordinate system in
millimeter resolution. The (0.0, 0.0) coordinate is located at
the origin of the slide (usually the slide corner).

	size (Tuple[float, float]) – Width and height of the requested slide region in millimeter unit
along the X and Y axis of the slide coordinate system, respectively.

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute.
Values must be in the range [0, Total Pixel Matrix Focal Planes)

	Returns

	Three-dimensional pixel array of shape
(Rows, Columns, Samples per Pixel) for the requested slide region

	Return type

	numpy.ndarray

Note

The slide coordinate system is defined for the upright standing slide
such that the X axis corresponds to the short side of the slide and the
Y axis corresponds to the long side of the slide.
The rows of the returned pixel array are thus parallel to the X axis of
the slide coordinate system and the columns parallel to the Y axis of
the slide coordinate system.

	
get_total_pixel_matrix(channel_index=0, focal_plane_index=0)

	Get total pixel matrix for a given optical path and focal plane.

	Parameters

	
	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute.

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute.
Values must be in the range [0, Total Pixel Matrix Focal Planes).

	Returns

	Total Pixel Matrix

	Return type

	dicomslide.TotalPixelMatrix

	
map_pixel_indices_to_slide_coordinates(pixel_indices)

	Map pixel indices to slide coordinates.

	Parameters

	pixel_indices (numpy.ndarray) – Zero-based (row, column) indices into the total pixel matrix of the
image

	Returns

	Zero-based (x, y, z) coordinates in the slide coordinate system in
millimeter

	Return type

	numpy.ndarray

	
map_slide_coordinates_to_pixel_indices(slide_coordinates)

	Map slide coordinates to pixel indices.

	Parameters

	slide_coordinates (numpy.ndarray) – Zero-based (x, y, z) coordinates in the slide coordinate system in
millimeter

	Returns

	Zero-based (row, column) indices into the total pixel matrix of the
image

	Return type

	numpy.ndarray

	
property metadata: Dataset

	Image metadata

	Type

	pydicom.dataset.Dataset

	Return type

	pydicom.dataset.Dataset

	
property num_channels: int

	Number of channels

	Type

	int

	Return type

	int

	
property num_focal_planes: int

	Number of focal planes

	Type

	int

	Return type

	int

	
property physical_offset: Tuple[float, float]

	Offset of the total pixel matrix from the
origin of the frame of reference along the X and Y axes of the slide
coordinate system in millimeter

	Type

	Tuple[float, float]

	Return type

	typing.Tuple[float, float]

	
property physical_size: Tuple[float, float]

	Size of the total pixel matrix along the X and
Y axes of the slide coordinate system in millimeter

	Type

	Tuple[float, float]

	Return type

	typing.Tuple[float, float]

	
property size: Tuple[int, int]

	Number of total pixel matrix rows and columns

	Type

	Tuple[int, int]

	Return type

	typing.Tuple[int, int]

	
class dicomslide.TotalPixelMatrix(client, image_metadata, channel_index=0, focal_plane_index=0, max_frame_cache_size=9, correct_color=True)

	Bases: object

Total Pixel Matrix.

The class exposes a NumPy-like interface to index into a total pixel matrix
of a tiled image, where each tile is encoded as a separate frame.
Instances of the class walk and quack like NumPy arrays and can be indexed
accordingly. When the caller indexes instances of the class, the
corresponding image frames are dynamically retrieved from a DICOM store and
decoded.

A notable difference to NumPy array indexing is that a one-dimensional
index returns an individual tile of the total pixel matrix (i.e., a 2D
array) rather than an individual row of the total pixel matrix (i.e., a 1D
array).

The caller can index instances of the class either using one-dimensional
tile indices into the flattened list of tiles in the total pixel matrix to
get one or more individual tiles or using three-dimensional pixel indices
(rows, columns, and samples) into the total pixel matrix to get a continous
region of pixels spanning one or more tiles.

Examples

>>> matrix = TotalPixelMatrix(...)
>>> print(matrix.dtype)
>>> print(matrix.ndim)
>>> print(matrix.shape)
>>> print(matrix.size)
>>> region = matrix[:256, 256:512, :]
>>> print(len(matrix))
>>> tile = matrix[0]
>>> tile = matrix[matrix.get_tile_index(2, 4)]
>>> tiles = matrix[[0, 1, 2, 5, 6, 7]]
>>> tiles = matrix[2:6]

Warning

The total pixel matrix may be very large and indexing the row or column
dimension with : may consume a lot of time and memory.

Construct object.

	Parameters

	
	client (dicomweb_client.api.DICOMClient) – DICOMweb client

	image_metadata (pydicom.dataset.Dataset) – Metadata of a tiled DICOM image

	channel_index (int, optional) – Zero-based index into channels along the direction defined by
successive items of the appropriate DICOM attribute(s).

	focal_plane_index (int, optional) – Zero-based index into focal planes along depth direction from the
glass slide towards the coverslip in the slide coordinate system
specified by the Z Offset in Slide Coordinate System attribute.
Values must be in the range [0, Total Pixel Matrix Focal Planes).

	max_frame_cache_size (int, optional) – Maximum number of frames that should be cached to avoid repeated
retrieval requests

	correct_color (bool, optional) – Whether pixel values should be color corrected

	
property dtype: dtype

	Data type

	Type

	numpy.dtype

	Return type

	numpy.dtype

	
get_tile_bounding_box(index)

	Get the bounding box of a tile.

	Parameters

	index (int) – Tile index

	Return type

	typing.Tuple[typing.Tuple[int, int], typing.Tuple[int, int]]

	Returns

	
	offset (Tuple[int, int]) – Zero-based (row, column) pixel indices in the total pixel matrix

	size (Tuple[int, int]) – Height (rows) and width (columns) of the tile

	
get_tile_grid_position(index)

	Get position of a tile in the tile grid.

	Parameters

	index (int) – Zero-based index of the tile in the flattened total pixel matrix

	Returns

	Zero-based (row, column) index of a tile in the tile grid

	Return type

	Tuple[int, int]

	
get_tile_index(position=None, frame_number=None)

	Get index of a tile.

	Parameters

	
	position (Union[Tuple[int, int], None], optional) – Zero-based (row, column) index of a tile in the tile grid

	frame_number (Union[int, None], optional) – One-base number of the corresponding frame item in the Pixel Data
element

	Returns

	Zero-based index of the tile in the flattened total pixel matrix

	Return type

	int

Note

Either position or frame_number must be provided.

	
get_tile_position(index)

	Get position of a tile.

	Parameters

	index (int) – Zero-based index of the tile in the flattened total pixel matrix

	Returns

	Zero-based (row, column) offset of a tile in the total pixel matrix

	Return type

	Tuple[int, int]

	
property ndim: int

	Number of dimensions

	Type

	int

	Return type

	int

	
property num_tiles: int

	Number of tiles

	Type

	int

	Return type

	int

	
property shape: Tuple[int, int, int]

	Rows, Columns, and Samples per Pixel

	Type

	Tuple[int, int, int]

	Return type

	typing.Tuple[int, int, int]

	
property size: int

	Size (rows x columns x samples)

	Type

	int

	Return type

	int

	
property tile_grid_positions: ndarray

	Two-dimensional array of integer values representing
the grid positions of individual tiles in the tile grid

	Type

	numpy.ndarray

	Return type

	numpy.ndarray

	
property tile_grid_shape: Tuple[int, int]

	Number of tiles along the column (top to bottom)
and row (left to right) direction of the tile grid

	Type

	Tuple[int, int]

	Return type

	typing.Tuple[int, int]

	
property tile_positions: ndarray

	Two-dimensional array of integer values representing
the positions of individual tiles in the total pixel matrix, i.e., the
offsets from the (0, 0) origin of the total pixel matrix at the top
lefthand pixel

	Type

	numpy.ndarray

	Return type

	numpy.ndarray

	
property tile_shape: Tuple[int, int, int]

	Number of pixel rows, pixel columns, and
samples per pixel of an individual tile

	Type

	Tuple[int, int, int]

	Return type

	typing.Tuple[int, int, int]

	
property tile_size: int

	Size of an invidual tile (rows x columns x samples)

	Type

	int

	Return type

	int

	
class dicomslide.TotalPixelMatrixSampler(matrix, region_dimensions, bounding_box=None, tile_grid_positions=None, padding=0)

	Bases: object

Class for sampling regions of a total pixel matrix.

Regions are sampled from a regular 2D Cartesian grid, where each region has
the same dimensions. Upon sampling, individual regions may optionally be
padded at one or more borders using pixels from adjacent regions.
Sampling can be constraint to a subset of the grid.

	Parameters

	
	matrix (dicomslide.TotalPixelMatrix) – Total pixel matrix

	region_dimensions (Tuple[int, int]) – Height (rows) and width (columns) of sampled regions

	bounding_box (Union[Tuple[Tuple[int, int], Tuple[int, int]], None], optional) – Bounding box of region of interest within total pixel matrix from
which regions should be sampled

	tile_grid_positions (Union[Sequence[Tuple[int, int]], numpy.ndarray, None], optional) – Grid position of tiles that intersect with the region of interest
within the total pixel matrix from which regions should be sampled.
Each grid position is a zero-based (row, column) index into the
tile grid of the total pixel matrix.

	padding (Union[int, Tuple[int, int], Tuple[int, int, int, int]], optional) – Padding on each border of the sampled region using pixels from
neighboring regions. If a single integer is provided, the value is
used to pad all four borders with the same number of pixels. If a
sequence of length 2 is provided, the two values are used to pad
the left/right and top/bottom border, respectively. If a sequence
of length 4 is provided, the four values are used to pad the left,
top, right, and bottom borders respectively.

Note

If bounding_box and tile_grid_positions are provided,
tile_grid_positions are ignored.

	
get_region_grid_position(index)

	Get position of sampled region in the grid.

	Parameters

	index (int) – Zero-based index of the sampled region

	Returns

	Zero-based (row, column) grid position

	Return type

	Tuple[int, int]

	
property matrix: TotalPixelMatrix

	Total pixel matrix

	Type

	dicomslide.TotalPixelMatrix

	Return type

	dicomslide.matrix.TotalPixelMatrix

	
property padded_region_shape: Tuple[int, int, int]

	Number of pixel rows, pixel columns, and
samples per pixel of sampled region with overlapping pixels from
neighboring regions

	Type

	Tuple[int, int, int]

	Return type

	typing.Tuple[int, int, int]

	
property padding: Tuple[int, int, int, int]

	Padding at the left, top, right, and
bottom of each sampled region

	Type

	Tuple[int, int, int, int]

	Return type

	typing.Tuple[int, int, int, int]

	
property region_shape: Tuple[int, int, int]

	Number of pixel rows, pixel columns, and
samples per pixel of a region

	Type

	Tuple[int, int, int]

	Return type

	typing.Tuple[int, int, int]

	
dicomslide.assemble_total_pixel_matrix(tiles, tile_positions, total_pixel_matrix_rows, total_pixel_matrix_columns)

	Assemble a total pixel matrix from individual tiles.

	Parameters

	
	tiles (Sequence[numpy.ndarray]) – Individual image tiles

	tile_positions (Union[Sequence[Tuple[int, int]], numpy.ndarray]) – Zero-based (row, column) position of each tile in the total pixel matrix

	total_pixel_matrix_rows (int) – Number of total rows

	total_pixel_matrix_columns (int) – Number of total columns

	Returns

	Total pixel matrix

	Return type

	numpy.ndarray

	
dicomslide.compute_frame_positions(image)

	Compute the positions of frames.

	Parameters

	image (pydicom.Dataset) – Metadata of a tiled image

	Return type

	typing.Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

	Returns

	
	total_pixel_matrix_positions (numpy.ndarray) – Zero-based (row, column) offset of the center of the top lefthand corner
pixel of each frame from the origin of the total pixel matrix in
pixel unit. Values are unsigned integers in the range
[0, Total Pixel Matrix Rows) and [0, Total Pixel Matrix Columns).
The position of the top lefthand corner tile is (0, 0).

	slide_positions (numpy.ndarray) – Zero-based (x, y, z) offset of the center of the top lefthand corner
pixel of each frame from the origin of the slide coordinate system
(frame of reference) in millimeter unit. Values are floating-point
numbers in the range [-inf, inf].

	channel_indices (numpy.ndarray) – Zero-based index for each frame into channels along the direction
defined by successive items of the appropriate attribute. In case of
a VL Whole Slide Microscopy Image, the attribute is the Optical Path
Sequence, and in case of Segmentation, the attribute is the Segment
Sequence.

	focal_plane_indices (numpy.ndarray) – Zero-based index for each frame into focal planes along depth direction
from the glass slide towards the coverslip in the slide coordinate
system specified by the Z Offset in Slide Coordinate System attribute.
Values are integers in the range
[0, Total Pixel Matrix Focal Planes).

	
dicomslide.compute_image_center_position(image)

	Compute position of image center in slide coordinate system.

	Parameters

	image (pydicom.dataset.Dataset) – Metadata of DICOM VL Whole Slide Microscopy Image instance

	Returns

	(x, y, z) coordinates

	Return type

	Tuple[float, float, float]

	
dicomslide.disassemble_total_pixel_matrix(total_pixel_matrix, tile_positions, rows, columns)

	Disassemble a total pixel matrix into individual tiles.

	Parameters

	
	total_pixel_matrix (numpy.ndarray) – Total pixel matrix

	tile_positions (Union[Sequence[Tuple[int, int]], numpy.ndarray]) – Zero-based (row, column) position of each tile in the total pixel matrix

	rows (int) – Number of rows per tile

	columns (int) – Number of columns per tile

	Returns

	Stacked image tiles

	Return type

	numpy.ndarray

	
dicomslide.does_optical_path_item_match(item, identifier=None, description=None, illumination_wavelength=None)

	Check whether an optical path item matches.

	Parameters

	
	item (pydicom.Dataset) – Item of the Optical Path Sequence

	identifier (Union[str, None], optional) – Optical path identifier

	description (Union[str, None], optional) – Optical path description

	illumination_wavelength (Union[float, None], optional) – Illumination wave length

	Returns

	Whether item matches

	Return type

	bool

	
dicomslide.does_segment_item_match(item, number=None, label=None, property_category=None, property_type=None)

	Check whether a segment item matches.

	Parameters

	
	item (pydicom.Dataset) – Item of the Segment Sequence

	number (Union[int, None], optional) – Segment number

	label (Union[int, None], optional) – Segment label

	property_category (Union[pydicom.sr.coding.Code, highdicom.sr.CodedConcept, None], optional) – Segmented property category

	property_type (Union[pydicom.sr.coding.Code, highdicom.sr.CodedConcept, None], optional) – Segmented property type

	Returns

	Whether item matches

	Return type

	bool

	
dicomslide.does_specimen_description_item_match(item, specimen_stain=None)

	Check whether a specimen description item matches.

	Parameters

	
	item (pydicom.Dataset) – Item of the Specimen Description Sequence

	specimen_stain (Union[pydicom.sr.coding.Code, highdicom.sr.CodedConcept, None], optional) – Specimen stain substance

	Returns

	Whether item matches

	Return type

	bool

	
dicomslide.find_slides(client, study_instance_uid=None, patient_id=None, study_id=None, container_id=None, max_frame_cache_size=6, pyramid_tolerance=0.1, fail_on_error=True, include_derived=True, specimen_stains=None, optical_path_ids=None)

	Find slides.

	Parameters

	
	client (dicomweb_client.api.DICOMClient) – DICOMweb client

	study_instance_uid (Union[str, None], optional) – DICOM Study Instance UID

	patient_id (Union[str, None], optional) – Patient identifier

	study_id (Union[str, None], optional) – Study identifier

	container_id (Union[str, None], optional) – Specimen container (slide) identifier

	max_frame_cache_size (int, optional) – Maximum number of frames that should be cached per image instance to
avoid repeated retrieval requests

	pyramid_tolerance (float, optional) – Maximally tolerated distances between the centers of images at
different pyramid levels in the slide coordinate system in
millimeter unit

	fail_on_error (bool, optional) – Wether the function should raise an exception in case an error occurs.
If False, slides will be skipped.

	include_derived (bool, optional) – Whether derived images (DICOM Segmentation or DICOM Parametric Map
instances) should be considered and included into slides

	specimen_stains (Union[Sequence[Union[pydicom.sr.Code, highdicom.sr.CodedConcept]], None]) – Specimen stains for which corresponding slide microscopy images should
be included in slides. Any image that does not contain one of the
stains in the speciment description will be omitted.

	optical_path_ids (Union[Sequence[str], None]) – Identifiers of optical paths for which corresponding slide microscopy
images should be included in slides. Any image that does not contain
any of the specified optical paths will be omitted.

	Returns

	Digital slides

	Return type

	List[dicomslide.Slide]

	
dicomslide.get_image_pixel_spacing(image)

	Get pixel spacing (spacing between pixels) of an image.

	Parameters

	image (pydicom.dataset.Dataset) – Metadata of a DICOM VL Whole Slide Microscopy Image instance
derived image instance (e.g., DICOM Segmentation)

	Returns

	Pixel spacing

	Return type

	Tuple[float, float]

Note

It is assumed that pixels are square.

	
dicomslide.get_image_size(image)

	Get size of an image.

	Parameters

	image (pydicom.dataset.Dataset) – Metadata of a DICOM VL Whole Slide Microscopy Image instance or a
derived image instance (e.g., DICOM Segmentation)

	Returns

	Number of pixels in each total pixel matrix

	Return type

	int

	
dicomslide.is_image(dataset)

	Determine whether a dataset is an image.

	Parameters

	dataset (pydicom.dataset.Dataset) – Dataset

	Returns

	Whether dataset is an image

	Return type

	bool

	
dicomslide.is_label_image(dataset)

	Determine whether a dataset is a LABEL image.

	Parameters

	dataset (pydicom.dataset.Dataset) – Dataset

	Returns

	Whether dataset is a LABEL image

	Return type

	bool

	
dicomslide.is_overview_image(dataset)

	Determine whether a dataset is an OVERVIEW image.

	Parameters

	dataset (pydicom.dataset.Dataset) – Dataset

	Returns

	Whether dataset is an OVERVIEW image

	Return type

	bool

	
dicomslide.is_tiled_image(dataset)

	Determine whether a dataset is a tiled image.

	Parameters

	dataset (pydicom.dataset.Dataset) – Dataset

	Returns

	Whether dataset is a tiled image

	Return type

	bool

	
dicomslide.is_volume_image(dataset)

	Determine whether a dataset is a VOLUME or THUMBNAIL image.

	Parameters

	dataset (pydicom.dataset.Dataset) – Dataset

	Returns

	Whether dataset is a VOLUME or THUMBNAIL image

	Return type

	bool

	
dicomslide.select_image_at_magnification(collection, magnification, tolerance=None)

	Select an image from a collection at a desired magnification.

	Parameters

	
	collection (Sequence[pydicom.dataset.Dataset]) – Metadata of DICOM VL Whole Slide Microscopy Image instances

	magnification (int) – Magnification level (corresponds roughly to object lens power of a
microscope) of the image that should be selected.
Note that an image with an exactly matching magnification may not
exist. In this case, the nearest level will be chosen.
Choices: {2, 4, 10, 20, 40}

	tolerance (Union[float, None], optional) – Difference between target magnification and closest available
magnification in millimeter that can be tolerated.

	Returns

	Image closest to the desired magnification

	Return type

	pydicom.dataset.Dataset

	Raises

	ValueError – When argument collection is an emtpy sequence, when argument
 magnification does not match one of the available options, or when
 tolerance is exceeded.

	
dicomslide.select_image_at_pixel_spacing(collection, pixel_spacing, tolerance=None)

	Select an image from a collection at a desired spatial pixel spacing.

	Parameters

	
	collection (Sequence[pydicom.dataset.Dataset]) – Metadata of DICOM VL Whole Slide Microscopy Image instances

	pixel_spacing (Tuple[float, float]) – Desired spacing between two pixels along the row and column direction
of the image from top to bottom and left to right, respectively.

	tolerance (Union[float, None], optional) – Difference between target magnification and closest available
magnification in millimeter that can be tolerated.

	Returns

	Image closest to the desired pixel spacing

	Return type

	pydicom.dataset.Dataset

	Raises

	ValueError – When argument collection is an emtpy sequence or when
 tolerance is exceeded.

Note

If multiple images with the same pixel spacing are contained in
collection, the first matching image will be returned. It is the
responsibility of the caller to filter the images beforehand if necessary.

	
dicomslide.sort_images_by_pixel_spacing(collection)

	Sort images by pixel spacing in ascending order (lowest to highest).

	Parameters

	collection (Sequence[pydicom.dataset.Dataset]) – Metadata of DICOM VL Whole Slide Microscopy Image instances

	Returns

	Sorted metadata of DICOM VL Whole Slide Microscopy Image instances

	Return type

	List[pydicom.dataset.Dataset]

	
dicomslide.sort_images_by_size(collection)

	Sort images by size in descending order (largest to smallest).

	Parameters

	collection (Sequence[pydicom.dataset.Dataset]) – Metadata of DICOM VL Whole Slide Microscopy Image instances

	Returns

	Sorted metadata of DICOM VL Whole Slide Microscopy Image instances

	Return type

	List[pydicom.dataset.Dataset]

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 dicomslide	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	assemble_total_pixel_matrix() (in module dicomslide)

 	
 	associated_images (dicomslide.OpenSlide property)

C

 	
 	channel_type (dicomslide.TiledImage property)

 	ChannelTypes (class in dicomslide)

 	
 	close() (dicomslide.OpenSlide method)

 	compute_frame_positions() (in module dicomslide)

 	compute_image_center_position() (in module dicomslide)

D

 	
 	
 dicomslide

 	module

 	dimensions (dicomslide.OpenSlide property)

 	disassemble_total_pixel_matrix() (in module dicomslide)

 	does_optical_path_item_match() (in module dicomslide)

 	
 	does_segment_item_match() (in module dicomslide)

 	does_specimen_description_item_match() (in module dicomslide)

 	downsampling_factors (dicomslide.PyramidLevel property)

 	(dicomslide.Slide property)

 	dtype (dicomslide.TotalPixelMatrix property)

F

 	
 	find_optical_paths() (dicomslide.Slide method)

 	find_segments() (dicomslide.Slide method)

 	
 	find_slides() (in module dicomslide)

 	frame_of_reference_uid (dicomslide.Slide property)

 	(dicomslide.TiledImage property)

G

 	
 	get_best_level_for_downsample() (dicomslide.OpenSlide method)

 	get_channel_identifier() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	get_channel_index() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	get_channel_type() (dicomslide.Slide method)

 	get_focal_plane_index() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	get_focal_plane_offset() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	get_image_pixel_spacing() (in module dicomslide)

 	get_image_region() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	get_image_size() (in module dicomslide)

 	get_pixel_indices() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	
 	get_references() (dicomslide.TiledImage method)

 	get_region_grid_position() (dicomslide.TotalPixelMatrixSampler method)

 	get_rotation() (dicomslide.TiledImage method)

 	get_slide_offset() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	get_slide_region() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	get_slide_region_for_annotation() (dicomslide.Slide method)

 	get_thumbnail() (dicomslide.OpenSlide method)

 	get_tile_bounding_box() (dicomslide.TotalPixelMatrix method)

 	get_tile_grid_position() (dicomslide.TotalPixelMatrix method)

 	get_tile_index() (dicomslide.TotalPixelMatrix method)

 	get_tile_position() (dicomslide.TotalPixelMatrix method)

 	get_total_pixel_matrix() (dicomslide.TiledImage method)

 	get_volume_images() (dicomslide.Slide method)

H

 	
 	has_pixels (dicomslide.PyramidLevel property)

I

 	
 	ImageFlavors (class in dicomslide)

 	is_image() (in module dicomslide)

 	is_label_image() (in module dicomslide)

 	
 	is_overview_image() (in module dicomslide)

 	is_tiled_image() (in module dicomslide)

 	is_volume_image() (in module dicomslide)

L

 	
 	LABEL (dicomslide.ImageFlavors attribute)

 	label_images (dicomslide.Slide property)

 	
 	level_count (dicomslide.OpenSlide property)

 	level_dimensions (dicomslide.OpenSlide property)

 	level_downsamples (dicomslide.OpenSlide property)

M

 	
 	map_pixel_indices_to_slide_coordinates() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	map_slide_coordinates_to_pixel_indices() (dicomslide.Slide method)

 	(dicomslide.TiledImage method)

 	
 	matrix (dicomslide.TotalPixelMatrixSampler property)

 	metadata (dicomslide.TiledImage property)

 	
 module

 	dicomslide

N

 	
 	ndim (dicomslide.TotalPixelMatrix property)

 	num_channels (dicomslide.Slide property)

 	(dicomslide.TiledImage property)

 	
 	num_focal_planes (dicomslide.Slide property)

 	(dicomslide.TiledImage property)

 	num_levels (dicomslide.Slide property)

 	num_tiles (dicomslide.TotalPixelMatrix property)

O

 	
 	OpenSlide (class in dicomslide)

 	OPTICAL_PATH (dicomslide.ChannelTypes attribute)

 	
 	OVERVIEW (dicomslide.ImageFlavors attribute)

 	overview_images (dicomslide.Slide property)

P

 	
 	padded_region_shape (dicomslide.TotalPixelMatrixSampler property)

 	padding (dicomslide.TotalPixelMatrixSampler property)

 	PARAMETER (dicomslide.ChannelTypes attribute)

 	physical_offset (dicomslide.Slide property)

 	(dicomslide.TiledImage property)

 	physical_size (dicomslide.Slide property)

 	(dicomslide.TiledImage property)

 	
 	pixel_spacing (dicomslide.PyramidLevel property)

 	pixel_spacings (dicomslide.Slide property)

 	properties (dicomslide.OpenSlide property)

 	Pyramid (class in dicomslide)

 	PyramidLevel (class in dicomslide)

R

 	
 	read_region() (dicomslide.OpenSlide method)

 	
 	region_shape (dicomslide.TotalPixelMatrixSampler property)

S

 	
 	SEGMENT (dicomslide.ChannelTypes attribute)

 	select_image_at_magnification() (in module dicomslide)

 	select_image_at_pixel_spacing() (in module dicomslide)

 	shape (dicomslide.TotalPixelMatrix property)

 	size (dicomslide.Slide property)

 	(dicomslide.TiledImage property)

 	(dicomslide.TotalPixelMatrix property)

 	
 	Slide (class in dicomslide)

 	sort_images_by_pixel_spacing() (in module dicomslide)

 	sort_images_by_size() (in module dicomslide)

T

 	
 	THUMBNAIL (dicomslide.ImageFlavors attribute)

 	tile_grid_positions (dicomslide.TotalPixelMatrix property)

 	tile_grid_shape (dicomslide.TotalPixelMatrix property)

 	tile_positions (dicomslide.TotalPixelMatrix property)

 	tile_shape (dicomslide.TotalPixelMatrix property)

 	
 	tile_size (dicomslide.TotalPixelMatrix property)

 	TiledImage (class in dicomslide)

 	total_pixel_matrix_dimensions (dicomslide.PyramidLevel property)

 	(dicomslide.Slide property)

 	TotalPixelMatrix (class in dicomslide)

 	TotalPixelMatrixSampler (class in dicomslide)

V

 	
 	VOLUME (dicomslide.ImageFlavors attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to dicomslide’s documentation!

 		
 Introduction

 		
 Design

 		
 Application programming interface

 		
 Installation guide

 		
 Requirements

 		
 Installation

 		
 User guide

 		
 Constructing a DICOM Client

 		
 Reading images using dicomslide API

 		
 Reading images using openslide API

 		
 Developer guide

 		
 Pull requests

 		
 Coding style

 		
 Running tests

 		
 Building documentation

 		
 License

 		
 API Documentation

 		
 dicomslide package

 		
 ChannelTypes

 		
 ImageFlavors

 		
 OpenSlide

 		
 Pyramid

 		
 PyramidLevel

 		
 Slide

 		
 TiledImage

 		
 TotalPixelMatrix

 		
 TotalPixelMatrixSampler

 		
 assemble_total_pixel_matrix()

 		
 compute_frame_positions()

 		
 compute_image_center_position()

 		
 disassemble_total_pixel_matrix()

 		
 does_optical_path_item_match()

 		
 does_segment_item_match()

 		
 does_specimen_description_item_match()

 		
 find_slides()

 		
 get_image_pixel_spacing()

 		
 get_image_size()

 		
 is_image()

 		
 is_label_image()

 		
 is_overview_image()

 		
 is_tiled_image()

 		
 is_volume_image()

 		
 select_image_at_magnification()

 		
 select_image_at_pixel_spacing()

 		
 sort_images_by_pixel_spacing()

 		
 sort_images_by_size()

_static/minus.png

_static/plus.png

_static/file.png

